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A. Overview
This document provides additional details and further

analysis of our proposed graph attention convolution (GAC)
in the main paper. In Section B we describe more details
on the network architectures and training parameters. Sec-
tion C provides a proof of Theorem 1, and the further anal-
ysis of our GAC is shown in Section D. Finally, we show
more visualizations of our point cloud segmentation results
in Section E.

B. Network Architecture and Training Details
Segmentation Network. Our segmentation network is

constructed on the graph pyramid of the point cloud. The
input point cloud is first represented as a graph pyramid in-
cluding 5 scales according to Section 3.3 of our main paper.
The subsample ratios for graph coarsening are set to 4-4-
4-2, i.e., the finest scale has 4096 vertices, then the coars-
er scales have 1024, 256, 64, and 32 vertices respectively.
Therefore, our segmentation network consists of 9 layers,
layers 1-5 consist of our GAC and the graph pooling op-
erations, layers 6-9 consist of the feature interpolation and
the skip connection modules. The output dimension of each
layer is set to 64-128-256-512-256-256-256-128-128. All
layers (except the last layer) are normalized with batch nor-
malization and activated by the ReLU function.

Considering that the S3DIS and Semantic3D datasets
contain objects of different sizes, the radius for neighbor
searching at each scale for the S3DIS dataset are set to 0.1m,
0.2m, 0.4m, 0.8m, and 1.6m, while they are 0.2m, 0.4m,
0.8m, 1.6m, and 3.2m for the Semantic3D dataset.

Classification Network. The classification network in
Section 4.4 of our main paper is built simply by replacing
the feature interpolation layers of the segmentation network
with a global pooling layer. The graph pyramid for classifi-
cation contains only 4 scales as the relatively small number
of sampling points on each CAD model. The subsample
ratios for graph coarsening are 2-4-4, i.e., the finest scale
has 1024 vertices, and the coarser scales have 512, 128, and
32 vertices respectively. The output dimension of each lay-
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Figure 1. Our classification netework for ModelNet40 shape clas-
sification.

er (including the fully connected layer) is 64-128-256-512-
256 (as shown in Figure 1).

Data Augmentation. Before constructing the input
point cloud into the graph pyramid, we augment the point
cloud on-the-fly by randomly rotating the point cloud along
the vertical axis and jittering the coordinates of each point
by Gaussian noise N(0, 0.01) truncated to [-0.05, 0.05].

Training Details. The networks are trained with the
Adam optimizer and cross-entropy loss with an initial learn-
ing rate of 0.001 and momentum of 0.9. For the segmenta-
tion task on the S3DIS and Semantic3D datasets, the net-
works are trained with 50 epochs and batch size 16. For the
classification task on the ModelNet40 dataset, the network
is trained with 200 epochs and batch size 32.

C. Proof of Theorem 1
For proof convenience, we first prove two lemmas:

• Lemma 1 is a useful fact that any continuous function
can be approximated by a multilayer perceptron with a
single hidden layer to an arbitrary precision.

• Lemma 2 states that any Hausdorff continuous func-
tion can be approximated by the compound of a multi-
layer perceptron and mean function (similar to [2]).
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Lemma 1. Suppose f : RF → RK , K ∈ Z is continuous
function. ∀ε > 0 and x ∈ RF , ∃ a multilayer perception
Mθξ , such that

‖f(x)−Mθξ(x)‖ < ε

where θξ is the parameters of multilayer perception Mθξ .

Proof. Lemma 1 is a direct corollary of Theorem 2 in [1] to
multi-output function.

Next, we provide the proof of Lemma 2. Following The-
orem 1, we denote X = {S : S ⊆ [a, b]F and S is finite },
f : X → R is a continuous set function w.r.t Hausdorff dis-
tance dH(·, ·). Then, ∀ε1 > 0, ∃δ > 0, for any S, S

′ ∈ X ,
if dH(S, S

′
) < δ, we have |f(S)− f(S

′
)| < ε1.

Lemma 2. Suppose f : X → R is a continuous set
function w.r.t Hausdorff distance dH(·, ·). ∀ε > 0 and set
S ∈ X , ∃ a multilayer perception Mθξ : X → RK , K ∈ Z,
such that

|f(S)− γ(Mean{Mθξ(x) : x ∈ S})| < ε

where γ is a continuous function, and Mean{·} is a mean
function that takes a set of vectors as input and returns a
new vector of their element-wise average value.

Proof. Without loss generalization, we consider S as a one-
dimensional finite set, i.e., F = 1. Denote Ω = [a, b], we
can evenly split Ω intoK = d b−aδ e small intervals [a+(k−
1)∆, a+ k∆], k = 1, 2, ...,K, where ∆ = b−a

K .
Define function m(x) = a + bx−a∆ c∆ maps x to the

lower bound of the interval it lies in. Let S
′

= {m(x) : x ∈
S}, then |f(S)− f(S

′
)| < ε1 as dH(S, S

′
) < b−a

K < δ.
Let continuous function σk = dH(x,Ω\[a + (k −

1)∆, a + k∆]), and symmetric function vk(S) =
Mean{σk(x) : x ∈ S}. Denote σ = [σ1, ..., σK ] and
v = [v1, ..., vK ], the value of vk indicates whether there
are points lying in the interval [a + (k − 1)∆, a + k∆],
k = 1, 2, ...,K.

Therefore, we further define a mapping function τ :
[0,+∞) → X as τ(vk) = {a + (k − 1)∆ : vk > 0}.
It maps the vector v to a set consisting of the lower bound
of the split intervals, which is exactly equals to the set S

′

we constructed above, i.e., τ(v(S)) = S
′
.

Let γ : RK → R be a continious function so that γ(v) =
f(τ(v)), then we have

|f(S)− γ(Mean{σ(x) : x ∈ S})|
=|f(S)− f(τ(Mean{σ(x) : x ∈ S})|
=|f(S)− f(τ(v(S)))|

=|f(S)− f(S
′
)| < ε1

where

γ(Mean{σ(x) : x ∈ S}
= γ([Mean(σ1(x) : x ∈ S), ...,Mean(σK(x) : x ∈ S)])

is a symmetric function which is independent of the order
of the elements in set S.

Next, we show that the continuous function σ can be
replaced by a multilayer perceptron. According to Lemma
1, we know that ∀ε2 > 0, ∃ a multilayer perception Mθξ ,
such that ‖σ(x)−Mθξ(x)‖ < ε2. Then, we have

‖Mean{σ(x) : x ∈ S} −Mean{Mθξ(x) : x ∈ S}‖
=‖Mean{σ(x)−Mθξ(x) : x ∈ S}‖
<|S|ε2

As S is a finite set, ∀δ1 > 0, ∃ ε2, such that |S|ε2 <
δ1. Therefore, according to the definition of a continuous
function, ∀ε3 > 0, ∃ multilayer perception Mθξ , such that

|γ(Mean{σ(x) : x ∈ S})− γ(Mean{Mθξ(x) : x ∈ S})| < ε3.

Then we have

|f(S)− γ(Mean{Mθξ(x) : x ∈ S})|
<|f(S)− γ(Mean{σ(x) : x ∈ S})|

+ |γ(Mean{σ(x) : x ∈ S})− γ(Mean{Mθξ(x) : x ∈ S})|
<ε1 + ε3

Let ε = ε1 + ε3, we have

|f(S)− γ(Mean{Mθξ(x) : x ∈ S})| < ε

We now restate Theorem 1 and provide its proof.

Theorem 1. Suppose f : X → R is a continuous set func-
tion w.r.t Hausdorff distance dH(·, ·). Denote Si = {hj :
j ∈ N (i)} ∈ X as the set of neighboring points of vertex
i ∈ V with arbitrary order. ∀ε > 0, ∃K ∈ Z and parameter
θ of GAC, such that for any i ∈ V ,

|f(S)− γ(gθ(Si))| < ε

where γ is a continuous function, and gθ(Si) ∈ RK is the
output of our GAC.

Proof. We show that there exists parameter θ that can rep-
resent our GAC function gθ as a mean operator (including
the MLP in Lemma 2), then Theorem 1 can be proved ac-
cording to Lemma 2.

As described in Section 3.1 of the main paper, the param-
eter θ of our GAC consists of two parts, i.e., θ = {θM , θα}

2
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, θM is the parameter of the applied MLP for feature trans-
formation and θα indicates the parameter of the attention
mechanism. Obviously, the mean function is a special case
of our attention mechanism when assigning even attentional
weights to all the neighbors as 1

|Si| . In addition, let θM = θξ
in Lemma 2, we have

gθ(Si) =
1

|Si|
∑
x∈Si

Mθξ(x)

= Mean{Mθξ(x) : x ∈ Si}

As Si ∈ X , according to Lemma 2, we have

|f(S)− γ(gθ(Si))|
=|f(S)− γ(Mean{Mθξ(x) : x ∈ Si})| < ε

D. Further Analysis of GAC
The proof in Section C states that, in the worst case, we

can convert the neighboring space into a volumetric repre-
sentation. The accuracy of the volumetric representation is
related to the output dimension K. In this section, we pro-
vide more analysis of the effect of the output dimension K
on both our GAC and the the mean/max operator (including
the MLP) [2].

Similar to Section C, we still consider a one-dimensional
finite set {h1, h2, ..., hM} contains the M > 1 neighbos
of vertex i ∈ V . When K ≥ M , according to the proof
of Theorem 1, there exists an MLP that maps each fea-
ture to a K-dimension feature space as {h′

1, h
′

2, ..., h
′

M} ∈
RK , where h

′

i is a K-dimension vector where the i-th el-
ement equals hi and the rest equal zero. Then, the out-
puts of the mean/max operator and GAC are omean =
1
M [h1, h2, ..., hM , 0, ...], omax = [h1, h2, ..., hM , 0, ...],
and ogac = [α1h1, α2h2, ..., αMhM , 0, ...] respectively,
where αi is the attentional weight of GAC. In this condi-
tion, both of them can entirely encode the input information
and reconstruct them.

When K < M , e.g., K = 1. Then {h′

1, h
′

2, ..., h
′

M} ∈
R, h

′

i ∈ R is a one-dimensional value. In this case, the out-
puts of the mean/max operator and our GAC are omean =
1
M

∑M
i=1 h

′

i, omax = Max{h′

1, h
′

2, ..., h
′

M}, and ogac =∑M
i=1 αih

′

i. It can be seen that neither the max nor the
mean operator can reconstruct the input information. How-
ever, the attentional weight αi of our GAC is dynamically
generated by the attention mechanism α(pj − pi, h

′

j − h
′

i).
Without loss generalization, considering α as a linear sys-
tem, we have

w1h
′

1 − w1h
′

i + b1 = α1

w2h
′

2 − w2h
′

i + b2 = α2

· · ·
wMh

′

M − wMh
′

i + bM = αM

, where wi is the learned weights and bi is a added ter-
m corresponding to pj − pi, which is independent of
{h′

1, h
′

2, ..., h
′

M}. Denote the weight matrix

W =



w1 0 · · · −w1 · · · 0
0 w2 · · · −w2 · · · 0
0 0 · · · −w3 · · · 0
...

...
. . .

...
. . .

...
0 0 · · · −wM · · · wM
α1 α2 · · · αi · · · αM


, c = [α1−b1, ..., αM −bM , ogac]T , h = [h

′

1, h
′

2, ..., h
′

M ]T .
The input information of our GAC can be reconstructed as
h = W †c, where W † is the pseudo-inverse matrix of W .
The attention mechanism of our GAC acts as an encoder
which maps the neighboring features into the attentional
weight space. Thus, our GAC is capable of representing
the entire neighboring information even though the output
dimension K is not sufficiently large.

Notably, the max and mean operator can be seen as two
special cases of our GAC as “max attention” and “mean at-
tention” respectively. The max operator tends to capture the
most “special” points, while the mean operator is their av-
erage description blurring the valuable points. Both of them
damage the structural connections between points of an ob-
ject and result in poor object delineation. Comparatively,
our proposed GAC aggregates the information by assigning
the neighboring points specific attentional weights, main-
taining the structure of the objects which is helpfull towards
fine-grained segmentation of point cloud.

E. More Visualizations
In this section, we provide more qualitative segmenta-

tion results on the S3DIS and Semantic3D datasets. For the
S3DIS dataset, we show our segmentation results from five
different types of rooms, their corresponding input data and
the ground truth in Figure 2. For the Semantic3D dataset,
due to the lack of public ground truth for the testing sets, we
only provide the input data and our segmentation results in
Figure 3.
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floor wall column beam window door table chair sofa bookcase board clutter

Input data Our segmentation results Ground truth

Figure 2. Example visualizations on the S3DIS dataset. The first column is the input point cloud, the second and third columns represent
our segmentation results and the ground truth. The ceiling and part of the wall are removed for visualization convenience. We can see that
the board is easily confused with the cluster which includes some posters and papers. In addition, the column which has no significant
color and local feature difference is also difficult to predict.
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Figure 3. Segmentation results on the Semantic3D dataset. The first column is the input point cloud, and the second column represents our
segmentation results. The hard scape is easily confused with the buildings as they include similar artificial signs.
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